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Abstract
Real-time transit tracking is gaining popularity as a means

for transit agencies to improve the rider experience. How-
ever, many transit agencies lack either the funding or initia-
tive to provide such tracking services. In this paper, we de-
scribe a crowd-sourced alternative to official transit tracking,
which we call cooperative transit tracking.

Participating users install an application on their smart-
phone. With the help of built-in sensors, such as GPS,
WiFi, and accelerometer, the application automatically de-
tects when the user is riding in a transit vehicle. On these
occasions (and only these), it sends periodic, anonymized,
location updates to a central tracking server.

Our technical contributions include (a) an accelerometer-
based activity classification algorithm for determining
whether or not the user is riding in a vehicle, (b) a memory
and time-efficient route matching algorithm for determining
whether the user is in a bus vs. another vehicle, (c) a method
for tracking underground vehicles, and an evaluation of the
above on real-world data.

By simulating the Chicago transit network, we find that
the proposed system would shorten expected wait times by 2
minutes with only 5% of transit riders using the system. At
a 20% penetration level, the mean wait time is reduced from
9 to 3 minutes.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

General Terms
Algorithms, Design, Experimentation, Performance
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1 Introduction
Real-time bus tracking, where available, has been well

received by transit riders. Knowing where a bus or train is
at present and when it will arrive at a particular stop cuts
down on waiting time, increasing efficiency while improving
safety and comfort. However, many transit agencies do not
yet provide tracking capabilities, due to resource constraints,
red tape or lack of incentive. Also, the cost of a transit track-
ing deployment can be prohibitive, sometimes running into
tens of millions of dollars [4, 1].

In this paper, we present a grassroots solution to transit
tracking, as an alternative or complement to official systems.
Rather than install and maintain an official tracking device in
each vehicle, our system enables users to collectively track
transit vehicles by reporting their location while inside them.

In the envisioned system, users run an application on their
smartphone to learn about the location or predicted arrival
time of a transit vehicle. The application remains as a back-
ground process after the user is finished with it, waiting to
see if the the user eventually enters a transit vehicle. Once in
a transit vehicle, the phone anonymously uploads its coordi-
nates, contributing tracking data to a central server.

A fully automatic system requiring no manual data in-
put is the most attractive solution. This is a hard prob-
lem that poses several technical challenges. First, knowing
that the user is in a vehicle requires us to accurately distin-
guish between walking, stationary use and vehicular move-
ment, without using power-hungry and sometimes unavail-
able GPS. Second, determining if the vehicle is a transit ve-
hicle, and which one, can be challenging due to GPS error in
“urban canyons” and similarities between bus routes. Non-
transit vehicles such as cars operate on the same major ar-
teries as buses, and we need to avoid misclassifying these as
buses. Finally, tracking subways that operate underground is
difficult because neither GPS nor WiFi/cellular localization
techniques work well there.

To this end, we design several novel algorithms, which,
together with a comprehensive evaluation, constitute the
main contributions of this paper.

Accelerometer-based activity classification to detect
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Figure 1. Measured difference between scheduled and
actual arrival times of buses in Chicago.

when a user is traveling in a vehicle.
Spatio-temporal trajectory matching to determine if

the detected vehicle is a transit vehicle, and which route.
Underground vehicle tracking to enable tracking of sub-

ways in addition to buses and trains.
We evaluate all components of the system on real-world

data, using a combination of manually collected traces from
smartphones and publicly available data from the Chicago
Transit Authority (CTA). We describe smartphone-based co-
operative transit tracking system, and evaluate the effect of
the percentage of instrumented transit riders (penetration
level) on our system through trace-driven simulation. We
find that with a 5% penetration level, we can service over
a third of all real-time bus tracking requests in the city of
Chicago. At a 20% penetration level, over 83% of queries
are serviced with real-time tracking, and the mean wait time
at a bus stop is reduced from 9 to 3 minutes. These results
reflect buses, and all hours of the day. For trains, and for the
rush hour commute periods, results would improve further.
2 Motivation and Background

In this section, we show that real-time transit tracking in-
formation has significant benefits in terms of expected com-
muter wait time, and study the main technical challenges in
cooperative transit tracking.
2.1 The Utility of Real-Time Tracking

Due to the dynamic nature of the road network and tran-
sit ridership, transit vehicles seldom adhere perfectly to their
published schedules. Using the Chicago Transit Authority
(CTA) buses as a case study, we recorded 6,300 bus-hours of
real-time location traces1, and performed a trace-based sim-
ulation to determine the accuracy of the published schedules.

Repeatedly choosing a random bus route, stop, direction
and time, we looked up the next departure in the schedule,
and compared this to the actual next departure, as provided
by the real-time location trace.

We use two metrics to evaluate the quality of an arrival
time prediction method. Figure 1 shows the CDF of these
two metrics for the static schedule method: looking up the
next arrival in the bus schedule. One metric, which we call
“error”, is the difference between the predicted next arrival
time and the actual next arrival time. A negative value de-
notes that an arrival occurred before the predicted time. The

1The CTA has official real-time bus tracking devices installed in
all vehicles.

Figure 2. GPS trace and an actual trajectory of a bus ride
downtown Chicago
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Figure 3. CDF of GPS localization errors for downtown
and suburban environments

other metric, which we call “wait”, assumes that the user ar-
rives at the bus stop at the predicted (scheduled) time, and
is the difference between the next arrival after the predicted
time, and the predicted time. These values are always posi-
tive, although sometimes a negative error can result in a very
large wait (consider missing the last bus of the day).

A user that arrives at the bus stop at the scheduled time
would miss 27% of departures that arrive early, and en-
counter a mean wait time of 5 minutes (median 7 mins), with
10% of wait times being more than 17 minutes. In less than
3% of cases is the wait shorter than 1 minute.

In §4 we show that real-time transit tracking reduces the
90th percentile of the wait time by half, even by checking
the predictor a single time. If the user checks the predictor
repeatedly as the arrival draws nearer in time, even better
gains can be expected.

2.2 Challenges
GPS Errors. The accuracy of GPS localization depends
heavily on the immediate surroundings of the receiver. High-
accuracy localization requires a clear line-of-sight to 4 satel-
lites in the sky above [12], and multi-path effects also con-
tribute to localization error [6, 12]. Both of these issues are
prevalent in areas with tall buildings, or “urban canyons”.
Figure 2 illustrates this problem, depicting a bus ride in
downtown Chicago with iPhone GPS readings as dotted
markers and the actual bus route as a thick red line.

Official transit tracking systems in urban areas address
this problem by augmenting error-prone GPS localiza-
tion with inertial navigation systems, including gyroscopes,
odometers, turn sensors and accelerometers, and use a route
map to “snap” the returned location to a sensible location [4].

As cooperative transit tracking is built on smartphones,
GPS errors impact our ability to accurately distinguish vehi-
cles and estimate arrival times. To determine the magnitude
of the problem, we performed GPS measurements in down-
town Chicago and its suburbs for users riding in a bus and
stationary ’on-street’ users. We developed an iPhone appli-



cation that continuously records GPS data, and lets the user
carefully mark their actual location on the map. Figure 3
shows the distribution of GPS errors as a CDF, summarized
in Table 1 below.

Environment Median (m) 90th pctile. (m)
Stationary in suburbs 6.6 12
Stationary downtown 31 99
Bus ride in suburbs 34 82
Bus ride downtown 70 160

Table 1. Measured GPS errors in different environments

The significantly higher error for bus rides vs. stationary
use was due to an unpredictable reporting delay incurred by
the iPhone OS when moving rapidly: GPS points from sub-
urban bus rides were typically well aligned with the road, but
poorly located along the road. Fortunately, this type of error
has little impact on route matching performance. Neverthe-
less, with a median error of 31 meters and 90th percentile
error of 99 meters downtown, GPS error is a significant chal-
lenge for any smartphone-based transit tracking system. §3.2
describes our system for addressing this problem, and §4.2
evaluates its performance.
Smartphone Accelerometry. Modern smartphones are al-
most universally equipped with built-in 3-axis MEMS ac-
celerometers, which are cheap, power efficient, and suffi-
ciently accurate for their primary purpose: to detect the ori-
entation of the device for user interface and entertainment
purposes. We use accelerometry to reduce our reliance on
precise positioning technologies, in part to save energy when
not in a transit vehicle, and in part to support underground
transit tracking, where GPS and other localization technolo-
gies perform poorly.

We place no restrictions on the orientation or placement
of the phone, and all our algorithms use the L2 norm of ac-
celeration along all three axes to avoid any orientation de-
pendence. The unknown location (pocket, hand, backpack,
etc.) of the phone also means that accelerometer signatures
may vary significantly, both in absolute values, and in the
frequency domain.
Battery Life. Continuously using the GPS is well known
to drain the battery on a smartphone quickly [16, 27]. In
contrast, the accelerometer is much less power hungry, as
indicated by the measurements in [16]. Here, a method is
provided for using the accelerometer to distinguish between
two states of mobility: stationary and moving. Our approach
to using the accelerometer is similar (§3.1), but differs in that
we also distinguish walking from vehicular movement. We
can thereby limit GPS use to vehicle tracking.

Table 2 captures the measured battery lifetime when con-
tinuously using the different sensors available on an iPhone.
Because it was not possible to turn off the phone’s screen
and at the same time keep the sensors running, all the ex-
periments were run with the screen brightness set to a mini-
mum while completely discharging the phone’s battery. The
results were averaged over 5 different phones. The exper-
iments were run with the phone’s screen turned on and we
would expect the battery lifetime to be significantly longer if
it was possible to turn the screen off.

Sensors used iPhone 3G iPhone 4
No sensors 18.6 hr (1.7) 16.6 hr (0.8)
Accelerometer 1Hz 19.5 hr (1.4) 17.3 hr (1.8)
Accel. 20Hz with FFT 18.3 hr (3.1) 16.9 hr (0.8)
GPS 6.1 hr (0.6) 10.1 hr (0.3)

Table 2. Mean (std.dev) battery duration, in hours, for
different sensor settings.
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Figure 4. Cooperative transit tracking system.

The battery duration was similar for running the ac-
celerometer with sampling frequency of 1Hz, the sampling
frequency of 20Hz (with an FFT computed every 128 sam-
ples), and for discharging the battery with no sensors turned
on. Between the three non-GPS scenarios we observed very
little variance, with the battery lifetime around 18 and 17
hours for iPhone 3G and iPhone 4 respectively. This clearly
illustrates the minor effect accelerometry has on energy con-
sumption. With GPS enabled, battery lifetime was reduced
by 42-66%. In both non-GPS and GPS cases, we would
expect battery lifetimes to be significantly longer with the
screen turned off. One may hypothesize that a simple expo-
nential mean calculated at 1 Hz would result in longer battery
life than an FFT on 20 Hz accelerometry, were the screen’s
energy consumption not drowning out the difference.

3 Cooperative Transit Tracking
Current transit tracking solutions are built on a combina-

tion of GPS localization and some form of wide-area connec-
tivity. While real-time vehicle tracking solutions are widely
available, they can be quite expensive to deploy. Many tran-
sit agencies do not have this capability today, or if they do,
do not make this data available to the public.

To assist the riders of these transit networks, we propose
a system based on participatory sensing using GPS-enabled
mobile phones. Besides the obvious cost advantage (no ad-
ditional equipment, subscription or maintenance charges are
needed), our proposed system also holds a significant prac-
tical advantage: it lets us track transit vehicles without first
securing the cooperation of local transit agencies, something
which can be extremely difficult to achieve at large scale.

Our cooperative transit tracking system is built from sev-
eral interacting components, as illustrated in Figure 4. The
majority of the computation is performed on the smart-phone
itself, safeguarding user privacy while conserving central
server resources. The activity classifier (§3.1) monitors the
user’s activities and automatically determines when they are
riding a vehicle. This triggers either the spatio-temporal
route matching engine (§3.2), to determine whether the user
is on a transit vehicle, and if so which one, or the under-
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Figure 5. Finite state machine of the activity classifier.
Sensors used vary by state. 1/20 Hz refers to accelerome-
try, RF refers to WiFi and cellular localization.

ground transit tracker (§3.3), which tracks vehicles where
GPS is unavailable. The end result is a “proxy” transit GPS
trace delivered to a central server, identifying the vehicle and
its current location, if (and only if) the user is currently on-
board a transit vehicle. The central server aggregates the pro-
duced real-time transit traces, and responds to arrival time
queries based on these traces.

Arrival time prediction accuracy is a function of the most
recently observed location(s) of the transit vehicle(s), which
in turn depends on the total number of active users in the
system. Performance evaluations of each component, and
of the end-to-end system, are provided in §4. Below, we
describe each component in more detail.

3.1 Activity Classification by Accelerometer
The basic activity detection algorithm takes accelerome-

ter and GPS data as input, and determines whether or not the
user is currently in a vehicle. Known techniques [17, 21, 29]
include using a threshold on the user’s GPS-derived veloc-
ity. This is insufficient for our application; continuously run-
ning the GPS drains the battery, buses may travel at walking
speeds during heavy congestion, and GPS may be unavail-
able or lack sufficient precision for reliable classification.

Accurate mobility detection, supporting both indoor (un-
derground) and outdoor mobility, is best provided by a com-
bination of GPS (for computing velocity), WiFi localization
(for detecting location changes where GPS is unavailable),
and accelerometry (for detecting movements directly). How-
ever, constantly sampling these sensors will quickly drain
the batteries of even the latest generation of smartphones.
Thus, our goal is to minimize the use of power-hungry sen-
sors while preserving system accuracy.

To address the problem of knowing when to use which
sensor, we define a finite state machine representing the var-
ious user states we are interested in, see Figure 5. Transi-
tions between states are limited by what is physically pos-
sible, and each state utilizes one or more sensors to detect
future transitions. For example, when in the sleep state, it
suffices to run the accelerometer at 1 Hz until movement is
detected. When walking, sampling the accelerometer at 20
Hz lets us catch any vehicular mobility, and RF localization
(cellular and WiFi) provide sufficient accuracy to determine
the entry-point to a potential underground station. Once we
detect vehicular mobility, we turn the GPS on to provide ac-
curate tracking results, and turn it off after walking is de-
tected once more. This system helps us save energy while
maintaining high accuracy when the user is traveling.

The state transitions in Figure 5 depend either on the
low-power motion detector (§3.1.1), the walking detector

(§3.1.2) or the vehicular motion detector (§3.1.3). Under-
ground transportation warrants special attention. Whenever
a localization method is active, the most recent location is
stored for later. Should vehicular movement be detected
while no GPS or low-error RF localization signal is avail-
able, the most recent location is matched against under-
ground transit stations to reveal the station where the trip
started. Underground transit tracking is discussed in §3.3.

Related work: The benefits of using low-energy sen-
sors to trigger more power-hungry sensors are well known
[22, 26, 28, 15, 11]. Related work on activity detection in-
cludes [20, 18, 19, 10, 8, 23, 24]. These use a combination of
accelerometry and other sensors to classify activities such as
standing, walking, or riding in an elevator. In contrast with
our work, this body of work uses accelerometers with known
locations/orientations, and additional sensors such as audio
or barometric pressure sensors which improve the classifica-
tion results.
3.1.1 Low Power Motion Detection

Smartphones are likely to spend a significant fraction of
their time stationary, during which time they cannot produce
transit tracking data. Our system includes a simple low-
power detector for possible transitions away from stationary
use. It can be thought of as a wake-up mechanism for the
more sophisticated detector described in §3.1.2.

Our low power motion detector samples the accelerom-
eter at 1 Hz, and continuously computes an exponentially
weighted mean and standard deviation of the X,Y and Z ac-
celerometer readings. If an incoming sample falls outside of
three standard deviations on any axis, it reports “motion de-
tected”. If the phone is static, the readings are more or less
constant and lie within this band. Occasional false alarms
have a negligible effect, as the 20 Hz detector described be-
low will quickly detect that no movement is taking place, and
return to the stationary state and its low-power detector. [16]
describes a similar energy conservation technique.
3.1.2 Walking detection

Walking detection based on accelerometry has been stud-
ied before, though under different circumstances. In [9], the
authors describe a step counter based on peaks in the ac-
celerometry. In other work, the orientation and placement
of the device were carefully controlled, providing highly
accurate acceleration data. For example, in an application
for medical rehabilitation, [7] used accelerometers placed at
multiple locations and with a specific orientation. Another
example of a carefully placed accelerometer sensor is the
Nike+iPod system [5] where the accelerometer is located in
a fixed place in the shoe. Most closely related to the activ-
ity classification aspect of our work is [25], which combines
GPS speed with a DFT-based features to build an activity-
classification decision tree. We compare against part of their
algorithm in the evaluation section.

The number of significant environmental factors, such as
location, walking style, physical user characteristics, cloth-
ing choice [9], etc. makes estimating the location of the de-
vice on the body from accelerometer data impractical. Recall
that our envisioned users are running our software on their
mobile phone, which they may be using for other activities,
or may choose to stow it in a pocket, bag or purse. Thus,



we have no control over or knowledge of the orientation or
placement of the device.

Our walking detector uses a technique similar to that de-
scribed in [25]. Raw accelerometer values, sampled at a
moderate 20 Hz, are first made orientation-independent by
computing the L2-norm (or magnitude) |a{x,y,z}| of the ac-
celerometer readings. For a sliding window w, we then com-
pute its discrete Fourier transform (DFT)

Mk =
|w|−1

∑
n=0

mne−
2πi
|w| kn (1)

where k = 0, . . . , |N|−1.
In [25], the magnitude of the DFT coefficients in fre-

quency bands common to walking (1-3 Hz) are used as fea-
tures for classifying a walking activity. To improve accuracy
we introduce an additional feature: peak frequency power.
This feature is independent of the speed of walking, and cap-
tures some of the cases where the fundamental frequency
(of walking) is not the peak frequency, due to placement-
dependent jiggling or bouncing effects. In the evaluation
section, we demonstrate greatly improved accuracy over the
pure DFT and total power features used in [25].
3.1.3 Vehicular Motion Detector

Detecting vehicular mobility by accelerometer serves two
purposes: (a) as an energy conserving mechanism for trig-
gering GPS localization only when in a vehicle, and (b) as
input to our underground transit tracking mechanism (§3.3).

Using the accelerometer as input, we estimate the proba-
bility that vehicular mobility is in progress. This algorithm
expects accelerometer input from periods of stationary use,
or vehicular movement. Our highly accurate walking detec-
tor is used to filter out periods of walking.

Based on observations from training data, we model the
two distributions of acceleration samples in the moving and
stationary state as Laplace distributions, with probability
density function

f (x|µ,b) =
1

2b
e−
|x−µ|

b ,

where µ is the median sample of the training set, and b =
1
N ∑

N
i=1 |xi−µ|.

Given these probability density functions, we use Bayes’
theorem to compute the probability that a sample x came
from the moving distribution

p(mov|x) =
f (x|µmov,bmov)p(mov)

f (x|µmov,bmov)+ f (x|µsta,bsta)
.

This probability is used as input to the subway tracking
mechanism in §3.3, and to determine when to turn on the
GPS, as illustrated in Fig. 5. For the latter, an HMM with
two states (stopped, moving) is used to smooth out short-
term variations.
3.2 Spatio-temporal Trajectory Matching

After the activity classification algorithm detects vehicu-
lar travel, the system needs to determine whether the vehicle
is a transit vehicle, and if so which one, before commencing
periodic location reports to the central server. This problem
is technically challenging for the following reasons:

Localization Errors. Data from GPS and WiFi/cellular lo-
calization has significant errors and gaps, especially in down-
town urban canyons with lots of tall buildings. Downtown is
precisely where many bus trips originate or end.
Overlapping Bus Routes. A number of bus routes in down-
town tend to overlap or coincide. This requires the algorithm
to be careful to not mistake one bus for the other, and to be
able to distinguish the routes when sufficient location infor-
mation is available.
Non-transit vehicles. We do not want to require the end
user to explicitly notify the application when they’re on a
bus. Rather, we want our algorithm to be able to distinguish
bus rides from car drives automatically, and as quickly as
possible. This can be challenging, as cars drive along the
same major arteries as bus routes. Although cars are typi-
cally much faster and do not adhere to the bus schedule, this
is not universally true – e.g., in rush hour or heavy traffic,
cars and buses can be equally slow, both not adhering to the
schedule. Neither can we distinguish on the basis of stop lo-
cations alone. Buses do not always stop at all bus stops on a
route, and cars may stop at lights or stop signs close to major
bus stops.
Hardware footprint. We want our matching algorithm to
be simple to implement, and use as little phone memory and
storage as possible, so as to minimize the initial download.

We use a two-stage algorithm to solve the real-time tran-
sit matching problem while addressing the above challenges.
The first step is an online least squares minimization algo-
rithm with an ordering constraint that finds the bus shape
which is the “closest fit” for a sequence of GPS points. The
second step is an intelligent post-processing step that distin-
guishes non-transit vehicles (cars) from buses, and identifies
almost identical or overlapping bus routes.

Our algorithm does not rely on storing a road map. It in-
stead matches locations directly to bus schedules, for which
we use a compact, compressed representation. This results in
a 5x footprint reduction (from 10 Megabytes to 2 Megabytes
in our implementation), which is important in the context
of a smartphone application – it can quickly download the
relevant “map tile” for whichever transit network is most rel-
evant to the user’s location.

Our post-processing step uses three features to quickly
disambiguate bus trips from non-transit vehicles on the same
path: adherence to the bus schedule, stopping at bus stops,
and inter-stop distance, which exploit the following obser-
vations:

• A car is typically significantly faster than the bus sched-
ule outside of rush hour.

• Though the above is not true in rush hour, the mean
distance between consecutive vehicle stops (including
both traffic lights and bus stops) is significantly higher
for a car than for a bus even in rush hour.

• Cars tend to not stop at bus stops.
We show empirical evidence and experiments to support

the use of these features.
We use a simple confidence metric — the difference in the

least squares residual fit error between the best and the sec-
ond best route match — to detect ambiguity between over-



lapping bus routes and start uploading tracking data only
when we are sure of the exact bus route.

We describe our algorithm in more detail below.
Input and Output. Our algorithm takes as input a sequence
of location samples Li (i = 1,2,3,...) As soon as the mode de-
tection algorithm detects that the user is in a vehicle, the al-
gorithm initializes and processes samples continuously while
the user remains in the vehicle. The output at each time step
is one of three possibilities: a bus route number and direction
e.g. “49 West”, a determination that the vehicle is a “Car”
(i.e. cannot possibly be a bus), or “Unknown Vehicle”. The
algorithm keeps GPS activated as long as it is tracking a bus
or is unsure; it stops sensing or uploading location informa-
tion to save energy and preserve privacy as soon as it is sure
the vehicle is not bus.
Algorithm Data. Our algorithm does not rely on a road map.
It matches raw locations to one of several possible unique
bus shapes defined in the general transit feed specification
(GTFS) [3]. Each bus shape consists of a sequence of bus
stops specified as latitude-longitude coordinates. We aug-
ment the shapes to include relative timing information i.e.
the scheduled visit time for each bus stop on the route mea-
sured with the reference that the starting time of the trip is
0. We do not use the absolute times of each bus trip for
simplicity and space reduction, though it is easy to mod-
ify the algorithm to do so. In our implementation for the
city of Chicago, our augmented shape information occupies
2 Megabytes, which we believe is a reasonable footprint, and
considerably smaller than the entire road map.
Initialization Period. Our algorithm begins with an “initial-
ization period” in which we narrow down the set of candi-
date bus routes to match to using a geospatial index lookup.
In our algorithm, the initialization phase lasts for a minute
or 100 metres of covered distance, whichever comes later:
empirically, we found that this is sufficient to identify the
possible candidates accurately. A larger period increases the
number of candidate bus route shapes by a significant factor,
resulting in an unnecessary computational burden.

Subsequent location samples are processed in three
steps: outlier removal, least squares minimization and post-
processing to filter out non-transit vehicle traces.
Outlier Removal. Outlier removal compares each new raw
data point to the preceding point, and uses a threshold on the
maximum possible instantaneous speed (we use 150 km/hr).
If this threshold is exceeded, the new point is discarded.
Least Squares Minimization. We use a simple online least
squares minimization algorithm with an ordering constraint
to find the closest spatial route match for a sequence of raw
GPS locations.

The algorithm works as follows. Each candidate bus route
consists of a sequence of shape segments, which are stretches
of the route between consecutive bus stops. Each iteration i
of the algorithm matches the input location sample Li to one
shape segment on each candidate route.

For each candidate route C, after having seen i loca-
tion samples (L1,L2, ...,Li), the algorithm keeps track of two
pieces of state:

• S(C, i), the shape segment that location Li was matched

to on route C in the previous step.

• ES(C, i) = Σi
k=1 dist(Lk,S(C,k)), the cumulative sum

of squares of distances of location samples to their
matched shape segments for each candidate route C.

At iteration i + 1, the algorithm finds the closest match-
ing segment S(C, i + 1) for location Li+1 that preserves the
ordering constraint that this segment must occur after S(C, i)
in shape C, and computes and updates the cumulative sum-
squared distance ES(C, i+1).
Post-processing. After each time instant, our algorithm
finds the candidate shape Cbest with the smallest value of
the cumulative sum-squared distance ES and executes a se-
quence of checks to determine whether the locations seen are
likely to come from a bus traveling along Cbest .

We describe these checks below in the order in which they
are performed. Each check uses parameters which are knobs
to the algorithm. We set these knobs using training data, as
described in each section.
Spatial Distance Check. The first check ensures the sam-
pled GPS locations align well spatially with a transit route
by thresholding the root mean square error (RMSE) of fit,
given by:

RMSE =
√

ES
N

assuming N locations have been processed so far. We use
two cutoffs: Dmaybe = 100m and Dre ject = 200m in this
check. We outright reject a trajectory if RMSE ≥Dre ject and
stop sensing and uploading GPS locations thereafter. If the
RMSE is smaller than Dre ject but larger than Dmaybe, we de-
cide the route match is not a bus match for now, but continue
running the algorithm. For downtown Chicago, we found the
worst GPS errors to be of the order of 85 metres from our
training data (Section 2.2), and hence, we set Dmaybe = 100
metres, slightly higher than this number. The intuition is that
a sustained mean error more than encountered in the urban
canyon measurements very likely reflects a vehicle on a route
that is not a bus route, and so is not a bus. We believe this
parameter would be similar for urban areas of most major
cities.
Schedule Deviation. Our second check captures the intu-
ition that a vehicle traveling much faster than a bus on the
best matching route is unlikely to be a bus. We compute a de-
viance score as part of our online algorithm which captures
how well the time intervals between visits of the tracked ve-
hicle to bus stops along the route line up with the predicted
time intervals from the bus schedule.

We only consider visits at intervals of length at least 5
minutes to compute the deviance score. This is because over
time periods smaller than 5 minutes, vehicle speeds have
high variance owing to local traffic or traffic lights and tend
to depart from the schedule anyway, irrespective of whether
the vehicle is a car or a bus.

Suppose a location sampled at time t is matched to a shape
segment S that contains a bus stop. If t is more than 5 minutes
after the previous recorded visit to a bus stop (on some other
segment S′), we compute the actual interval of time between
these two visits. Denote this by Iactual . We then compare this
number to the scheduled interval of time Ischeduled between
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Figure 6. Computing deviance scores.
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the two stops, as computed by looking up the bus schedule.
We compute the ratio r = Iactual/Ischeduled .

Figure 6 illustrates an example. The route in the figure has
four scheduled stops: A, B, C and D. The scheduled times
for these stops are ST = 1, ST = 3, ST = 7 and ST = 13
respectively, all in minutes from the beginning of the route.
The actual trajectory visits these stops at times t = 2, t = 4,
t = 9 and t = 14 respectively. Since we only consider inter-
visit intervals of at least 5 minutes, only A, C and D count
as visits, and only intervals AC and CD are included in the
computation. The ratio rAC is 9−2

7−1 = 7
6 and rCD is 14−9

13−7 = 5
6 .

Intuitively, r < 1 represents the vehicle being ahead of
schedule and r > 1 represents being behind schedule. A
small value of r is likely to indicate a fast car, and a large
value of r is likely to indicate heavy traffic.
Threshold on r. We found the empirical distribution of the
ratio r using a training data set of 11,810 bus trajectories
from CTA’s real-time feed. Figure 7 shows this distribution.
The graph shows that r < 0.5 i.e. a bus being twice as fast as
the schedule, is an extremely rare event.

For the deviance check, we model the falloff on the left
side in Figure 7 by a normal distribution and compute the
deviance N(1−r,σ f ast) for r < 1. Here N is the density func-
tion for a normal distribution with mean 1− r and standard
deviation σ f ast . Based on the distribution in Figure 7, we
chose the constant σ f ast = 1

6 to make r < 0.5 a 3σ event for
the normal distribution, which has very low probability.

While we have limited data from cars driving along bus
routes, we collected some empirical data from cars in down-
town Chicago along bus routes as part of our experiments.
Our data indicates that outside of rush hour, cars are on av-
erage twice as fast as buses. This corresponds to r < 0.5, and
validates that our choice of σ f ast is likely to correctly classify
most trajectories as either cars or buses.
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For a city without a real-time feed where we would want
to deploy cooperative transit tracking, we would suggest re-
computing the appropriate cutoff on r using the procedure
above, by collecting a training set of representative bus and
car rides from that city.
Stopping Checks. The spatial error check and the schedule
deviation check do not always filter out cars in rush hour, and
hence we use different checks to handle this case.

We define “stops” in the raw location data as intervals
of time where a vehicle remains stationary for a minimum
duration (we use 15 seconds). First, we require a minimum
number of stops MC to occur near known bus stops before
we make a determination that the trajectory is a bus route. In
our implementation, we use a cutoff of MC = 3 stops.

Second, we found in our experiments that the inter-stop
distance i.e. the average distance between consecutive stops,
is a good distinguishing metric between buses and cars. Fig-
ure 8 shows a CDF of the average inter-stop separation for
several real bus and car traces we collected, along the same
routes, including traces in rush hour. The figure shows that
bus traces have a significantly lower mean inter-stop separa-
tion. We exploit this by adding a statistical test to our post-
processing phase. We use a set of training traces to learn a
mean and variance for the inter-stop distance for buses and
cars respectively. At run time, our algorithm looks at the
inter-stop distances actually observed on the trajectory, and
determines which of the two means it more likely has.

There are two reasons for the trend in inter-stop distance
— first, buses stop more often at bus stops than cars do. Sec-
ond, traffic lights in many downtown areas of cities are often
synchronized to allow vehicles moving at car speeds to tra-
verse several lights without encountering a red light. Our
conjecture is that buses, which service bus-stops in between
lights, do not have this advantage and so tend to stop at more
signals as well.

Somewhat counter-intuitively, other metrics we tried, like
the actual locations of stops, or stop times, are not as good
predictors as the inter-stop distance, and do not seem to be as
robust to variations between rush hour and light traffic. We
found the inter-stop distance to be robust across all the traces
we collected, and in both rush hour and light traffic.

To understand how universal the parameters we learned
are, we evaluated the inter-stop distance for two entirely dif-
ferent vehicular data sets. The first data set consists of over
192 hours of GPS data from shuttles operating on the Univer-
sity of Illinois campus, and the second data set consisted of



115 drive hours of GPS data from cars driving in the Boston
area, obtained from the Cartel [13] project. The car data set
had a mean inter-stop separation of 577 metres. This corrob-
orates a mean of 634 metres found in our Chicago data set.
However, the shuttle data set had a higher than expected sep-
aration of 433 metres — indicating campus shuttles operate
somewhat differently from buses. Thus, the inter-stop dis-
tance parameters we learned seem accurate for cars in urban
areas, but might have to be re-learned for different kinds of
transit networks or for suburban areas.
Overlapping Routes. The three checks described above
confirm that the tracked vehicle is likely to be a bus. The
fourth and last check aims to avoid premature misclassifica-
tion in the case when there are two overlapping bus routes.
This is quite a common occurrence since some routes are
extensions or subsets of other routes.

We compute a confidence metric given by the difference
in the mean-squared error of fit (RMSE) between the maxi-
mum likelihood route and the second most likely bus route,
computed over a 2 minute sliding window. Empirically, we
have found that this confidence metric is close to zero when
the algorithm is confused between two almost-identical or
overlapping routes, and quickly increases when the routes
diverge. When the confidence metric exceeds a cutoff, we
output the bus route number, otherwise we defer judgment
and report “Unknown vehicle”.

A higher value for this “confidence cutoff”, which we de-
note by CC, implies the algorithm is more conservative and
may take more time to confirm a particular bus route and
start tracking that route. A lower value enables quicker real-
time tracking, but can confuse overlapping routes in some
cases. We show how the choice of cutoff affects these results
with experiments in our evaluation. Based on our experi-
ments (Section 4.2), we arrived at a value of 30 metres for
the confidence cutoff CC.
3.3 Tracking Underground Transit

As GPS receivers typically are not able to determine
their location while underground, location tracking in under-
ground environments requires non-GPS solutions. Unfortu-
nately, WiFi and cellular localization also work poorly. In
the Chicago underground transit system, we frequently ob-
served cellular/WiFi localization errors of up to 10 miles.2
However, in many cities cell-phone connectivity is intermit-
tently available in tunnels, and almost universally available
in stations. Thus, assuming we can estimate the location of
the train through some other means, we can report the esti-
mated location for cooperative transit tracking purposes.

We base our underground tracking system on the vehicu-
lar motion detector described in §3.1.3, and a schedule-based
hidden Markov model (HMM) described below. The Viterbi
algorithm is used to calculate the most likely vehicle location
given past evidence.

We take the incoming stream of vehicular movement
probabilities (see §3.1.3) and compute 30-second windowed
means, roughly corresponding to the shortest possible stop

2On platforms that provide access to raw WiFi scans or cell
ID’s, it may be possible to enhance the localization technology. The
iPhone platform specifically disallows this type of access.

Figure 9. Detecting train mobility by accelerometer. The
blue line shows raw accelerometer data, and the green
line smoothed probability of being in a “moving” inter-
val. The shaded blocks (upper) indicate actual periods of
mobility, the lower indicate estimated periods.

at a station. We then apply a simple peak detector to the
windowed mean probabilities. Intuitively, each interval of
movement corresponds to one peak, and each interval of sta-
tionarity corresponds to one trough. We use this approach
instead of absolute thresholds on the probabilities because
the noise in acceleration samples varies quite a bit from set-
ting to setting, and we found the relative trend to be a more
robust estimator than the absolute value. We name these
peaks and troughs anchors. The green line in Figure 9 shows
the result of this computation for a recorded subway trace,
with anchors marked. With the number of intervals deter-
mined, and with an anchor for interval, the remaining step
is to find the optimal boundary between each “moving” and
“stationary” interval, which can be done in a single pass of
the samples between neighboring anchors. The two sets of
grey boxes in Figure 9 compare the results of the algorithm
(lower) to the annotated ground truth indicating when the
train was in the tunnel between stations (upper). The algo-
rithm detects all stops, and provides a good estimate of the
duration of most intervals. One apparently spurious stop is
detected between 600 and 800 seconds. Here, the train was
actually stopped, but in the tunnel as opposed to at the sta-
tion. Our subway tracking algorithm uses a schedule-based
hidden Markov model to filter out this type of spurious stop,
as described below.

3.3.1 Filtering out spurious stops
Given the estimated intervals of mobility and stationar-

ity, we compute the most likely current location of the phone
(train) based on the train’s schedule. In contrast with the
algorithm in Section 3.2, this algorithm takes the route, di-
rection, and last GPS fix as input. Determining the route
is relatively easy for subway trains, given the last GPS fix.
Stations are further apart than bus stops, and many stations
serve only one line. Direction of travel underground can be
estimated using the compass and accelerometer together.

We briefly overview how the Viterbi algorithm works
here. A Hidden Markov Model (HMM) models each ob-
served variable — in our case, accelerometer response at
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Figure 10. HMM for accelerometry and schedule-based
subway tracking.

each instant of time — as coming from an underlying hid-
den state. A HMM has three components: a set of hidden
states, a set of emission scores for each pair (P, S) where P
is a point and S is a hidden state, that are proportional to the
probability of observing P given underlying state S, and a set
of permitted transitions (Si, S j), each with transition scores
proportional to the probability of transitioning from state Si
to state S j.

The Viterbi algorithm processes observations in an online
fashion and matches them to underlying hidden states. At
any time instant, it maintains a score vector SV , with one
score SVi for each hidden state i. At any time t, SVi(t) is pro-
portional to the maximum likelihood that the current state is
i given the observations up to and including time t. Given a
candidate “path” i.e. a sequence of accelerations and corre-
sponding hidden states, the likelihood of the path is the prod-
uct of the emission and transition scores along the path. The
maximum likelihood SVi is the largest value of this product
across all possible paths that terminate in i, and is updated
at each time instant by the Viterbi algorithm. At any instant,
the output is the state i with the highest score SVi.

We now specify the states, emission probabilities and
transition probabilities of our Hidden Markov Model below,
a slice of which is illustrated in Figure 10.
States. The HMM has three types of states: stopped at sta-
tion (one/station), moving in tunnel (one/tunnel between sta-
tions), and stopped in tunnel (one/tunnel between stations).
Emissions. The emission probabilities are straightforward:
the “stopped” states always emit stationary periods, and
never emit moving periods. The “moving” states always emit
moving periods, and never emit stationary periods.
Transitions. All allowable transitions are represented in Fig-
ure 10. Specifically, trains cannot reverse direction (no back-
ward edges), and cannot skip stations. Any number of stops
are allowed between stations. Only two edges carry non-
obvious (0 or 1) transition probabilities: those that represent
transitions from a moving state to either a stopped at station
state, or a stopped in tunnel state. For these, we define an
arrival time probability distribution as a function of the time
t spent in the moving state so far:

E(tsched− t,λahead), t < tsched (2)
kE(t− tsched ,λbehind), t => tsched (3)

where tsched the scheduled inter-station time for the pair of
stations in question, and k a scaling factor to make the distri-
bution continuous. Empirically, we set λbehind = 0.5, to re-
flect a significant probability of late arrival, and λahead = 2,
reflecting that beating the schedule by a significant margin is
unlikely.
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Figure 11. Precision vs. recall for 3 sample window sizes.
The 256-sample detector exhibited perfect classification
performance on our training set.

Transitions to “stopped in tunnel” have a low non-zero
probability if t > tsched (the train is likely to have reached
the station when it stops, so a stop is less likely to be a tun-
nel stop), and a higher probability of pstop(1−E(t,λahead))
when t < tsched , where pstop is the prior probability of tunnel
stops, which we set to 0.5.

4 Performance Evaluation
We base our evaluation on the following data sets:
• Accelerometer traces from 5 volunteers

• 12 hours of manually collected vehicular GPS, WiFi
and cellular localization traces.

• 6,300 hours of official CTA bus tracking data.

• 192 hours of GPS data from UIC campus shuttles.

• The official Google Transit Feed Specification sched-
ules from the Chicago Transit Authority (CTA).

The second data set was collected using applications
developed in-house. In order to create a highly accurate
ground-truth data set, we devised a method for entering lo-
cations manually from a map, while in motion. In a prepara-
tory step, the operator indicates an exact location on a map.
Once the location is reached, they click a ’record’ button to
indicate this. In the case of a stop, the button is clicked a
second time to indicate the departure. Through this method,
we are able to record a set of highly accurate ground truth
locations. Linear interpolation is used to estimate locations
between these manually recorded points.

4.1 Activity Classifier Accuracy
Using volunteers, we recorded accelerometer traces dur-

ing stationary use of the phone, as well as four walking sce-
narios: simultaneous use of phone, holding phone in hand
swinging next to the body, phone in back pocket, and phone
in front pocket. Finally, we recorded accelerometry from
two 30-minute bus rides, two 15-minute car drives, and a
minute of waving the phone around violently, though with-
out persistent periodicity. To create Figure 11, we computed
the precision and recall values on this labeled training data,
while varying the detection threshold. As the plot shows,
a 256-sample window achieved perfect performance on our
training set, a promising sign. By contrast, classifiers us-
ing shorter sample windows have difficulty with some sam-
ples, likely due to temporary ambiguities due to short stops,



change of position, or brief moments of suspension-induced
wobble following a pothole or other road disturbance en-
countered while riding in a vehicle. Guided by these results,
we use 256-sample windows for our remaining experiments.

Walk non-Walk Walk non-Walk
Walk 92% 8% 97.5% 2.5%

Non-Walk 0.4% 99.6% 0.1% 99.9%
Without Peak Power With Peak Power

Table 3. Walking detection accuracy on a variety of la-
beled test traces. Peak power feature significantly im-
proves walking detection performance. Rows represent
labeled classes, columns classifier output.

The complete activity classifier consists of a decision tree,
using the powers of the DFT frequency bins in the 1-3 Hz
range, the variance of the sample window, and the peak fre-
quency power as features. In contrast with [25], we do not
use GPS speed as a feature, as the primary purpose of our de-
tector is to reduce the amount of time spent using the GPS.

Table 3 compares the accuracy of our walking classifier
to a non-GPS approximation of that in [25]. Results shown
were produced using 10-fold cross-validation and a sliding
256-sample window, with classification performed every 32
samples ( 1.5 sec). We use the classregtree function provided
by Matlab for this experiment. The ’Walk’ set contains sam-
ples from 5 volunteers, walking a set course while varying
the location of the phone, including in-hand in front of the
body, swinging next to the body, held by the ear, in front and
back pockets, as well as in backpacks and jacket pockets.
The ’non-Walk’ set contains several bus, train and car rides,
several periods of active use without movement, biking with
the phone in the front and back pockets, as well as a period
of violently waving the phone around.

Classification performance is significantly improved by
adding the peak power feature, resulting in 99.9% precision
with 97.5% recall. We note that a determined adversary
could easily fool this classifier into, for example, thinking
it is walking when it is not, by simply moving the phone up
and down periodically. Adversarial behavior is outside the
scope of this work.

Without the peak power feature, a typical decision tree
consisted of 31 nodes, with 15 internal nodes. With the fea-
ture, a typical tree had 11 nodes, with 5 internal nodes. The
peak power feature was always the root node of these trees.
Total spectrum power typically did not appear in any rules.

4.2 Trajectory Matching Accuracy
We have implemented the route matching algorithm de-

scribed in Section 3.2 as an Android phone application.
The bus schedule representation occupies approximately 2
Megabytes. Since the algorithm requires memory propor-
tional to the number of shape segments being matched
against, we use a spatial index to look up the set of rele-
vant schedules to match to. The first few location samples
are used to narrow down the set of relevant bus schedules to
match to. The spatial index occupies a few extra kilobytes.

Our route matching algorithm processed approximately 6
raw locations per second on a Nexus One phone running An-

droid 2.1, and hence can comfortably handle real-time transit
matching with one sample per second.

We evaluate our transit matching algorithm on three data
sets. The first set consists of 26 manually collected car and
bus traces in and around downtown and suburban Chicago.
The second set consists of 1,464 real bus traces spread evenly
across all the bus routes in Chicago, obtained from the
Chicago Transit Authority’s bus data feed [2], and perturbed
according to a noise model. The third set consists of 200
driving traces from shuttle vehicles that operate within the
University of Illinois Campus, and have partial overlap with
CTA bus routes. This set consists of 192 hours of GPS data.

We use three metrics in our evaluation: recall, precision
and decision time. The recall is the fraction of bus traces
for which we correctly identify the route number and start
tracking the bus before the trace ends i.e. the user gets off the
vehicle. Traces that are actually bus traces but we classify as
a non-transit vehicle (car) or as a different bus subtract from
the recall. Similarly, traces we are unsure about until the
very end when the user gets off, and we report as “Unknown
Vehicle” throughout, also subtract from the recall.

Given the traces that our algorithm classifies as buses and
starts tracking, the precision is the fraction of those traces
that are actually bus traces, and for which our algorithm finds
the correct bus route number. Bus traces for which we find
the wrong route number, or car (or shuttle) traces we think
are buses, all subtract from the precision. We want our algo-
rithm to have a high precision, as every such misclassifica-
tion risks misleading users of cooperative transit tracking.

The decision time is the amount of time that elapses from
when a rider boards a vehicle to when our algorithm is either
confident that the rider is on a bus and can output a guess
of the route number, or is confident that the route is not a
bus and can stop tracking it. It is important to minimize the
decision time when on a bus to ensure that we can use infor-
mation from short bus trips (which are quite typical in down-
town), and to minimize energy use and preserve privacy in
the case when the user is on a non-transit vehicle.
Real CTA Data. We evaluate our algorithm on 1,464 traces
from the CTA real time feed, perturbed according to a uni-
form noise model. We use the GPS error measurements in
Section 2.2 to inform our noise model: specifically, we per-
turb the x and y coordinates of each location so that the mean
distance from each perturbed point to the ground truth point
it is derived from is 39 meters in the suburbs and 84 meters
in the “loop” (downtown Chicago).

The CTA data gives us a location trace for the entire bus
run. We simulate bus trips where users board a bus at a ran-
dom location in the first half of the bus run. The CTA ground
truth data is only sampled every minute, and we interpolate
intermediate points. As a consequence, we cannot use the
minimum stop count criterion MC and the inter-stop distance
criteria mentioned earlier — we disable these checks. This
is not a problem for route accuracy evaluation; for evaluating
how well we can distinguish buses from cars (following sub-
sections), we re-enable these checks, since we are testing on
fine-grained one-sample-per-second GPS data that includes
stop information.

Figure 12 shows the precision and recall for the CTA data
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set, for different values of the confidence cutoff CC discussed
in Section 3.2. Figure 13 shows a CDF of the decision time
for different values of CC.

We see that the precision increases significantly with CC.
This is because most of the classification error in the CTA
bus data set comes from mistaking one route for an over-
lapping, but slightly different route. Increasing CC requires
the algorithm to have more confidence before it confirms an
answer, and reduces the error rate.

However, the recall, which is the fraction of buses iden-
tified correctly, does not improve as dramatically as the pre-
cision. This is because although higher CC improves preci-
sion, it also causes the algorithm to fail to report an answer
for many bus trips before the user gets off since it does not
have sufficient confidence.

The decision time (Figure 13) is smallest for a low value
of CC (e.g. CC = 10) since the algorithm requires less con-
fidence to come to a decision. However, this value has poor
precision. For a high value like CC = 100 metres, the pre-
cision is very good (97%) but the decision time can be quite
high in the tail. From an overall system point of view, tak-
ing both the recall and decision time results into account, we
found CC = 30 to be the best option that maximizes overall
recall for a given elapsed time.

For our chosen value of CC, the median decision time is
less than 3 minutes, and we can detect 55% of buses correctly
within 5 minutes (The 55% number comes from multiplying
the value of the decision time CDF at 5 minutes with the
recall). We only classify 9% of bus trips wrongly, and most
of these are cases with two overlapping routes, one being a
proper subset of the other. Many users will not be affected
significantly by these errors. For example, CTA buses 108
and 8A have virtually identical routes, stopping at almost all
of the same stops. Reporting a 108 bus as an 8A would not
affect most users.

In addition to the above traces from the CTA, which were
sampled once a minute and interpolated, we also manually
collected 16 bus traces sampled once a second. The algo-
rithm classified 13 of them correctly and missed classifying
3 of them. Two of these were relatively short traces with am-
biguity between two candidate bus routes, such that even one
of our authors could not tell the difference. The “confidence
cutoff’ check for overlapping routes failed in both cases.
Postprocessing Evaluation. Our evaluation above showed
that on real bus data, our algorithm can quickly come to a
decision with good accuracy. However, for a complete eval-
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Route Verdict Reason For Verdict
Along 12W Car Too fast, schedule dev. < -3σ f ast
Along 156N Car Too fast, schedule dev. too high
Along 156S Car Too fast, schedule dev. too high
Along 8N Car Interstop dist. of 530m too large
Along 8S Car Interstop dist. of 628m too large
Near 22N Unkn. Only 1 stop near a bus stop

Table 4. Transit matching on car traces along or near
known bus routes.

uation of the system, we also need to evaluate how well the
algorithm performs on car and non-transit vehicle traces —
does it quickly reject these traces and stop tracking the user?

We cannot directly evaluate how well our algorithm filters
out car traces since we only have access to a limited number
of car traces. Rather, we evaluate this indirectly using two
smaller-scale experiments, as explained below.

In the first experiment, we ran our algorithm on 200 GPS
traces (amounting to over 192 drive hours of data) from
shuttles operating on the University of Illinois Campus near
downtown Chicago, that are not part of the CTA bus net-
work. This is a challenging data set because many of the
shuttle routes have significant overlap with some CTA bus
routes. On this data set, our algorithm with CC = 30 per-
formed well, classifying 194 of the 200 traces correctly as
non-transit vehicles. 6 vehicle traces were classified incor-
rectly as CTA buses, owing to significant overlap with CTA
routes. The minimum bus stop count check (MC ≥ 3) that
we require before we report a vehicle as a bus turns out to
be crucial here. The shuttle stops do not coincide with CTA
stops. Without the bus stop check, as many as 90 of the 200
traces were classified incorrectly as CTA routes. The median
time to a decision for the shuttle traces was 4 minutes. Thus,
on average, we would stop tracking the user after 4 minutes
and save energy/preserve privacy.

In our second experiment, we collected a limited data set
of car traces in downtown Chicago, some carefully chosen to
coincide with bus traces. Table 4 shows the result of running
our transit matching algorithm on these traces. Some of these
traces were deliberately chosen to coincide exactly with bus
routes while others were in the vicinity of bus routes.

The table shows that our postprocessing checks work cor-
rectly to distinguish these cars from buses, even though 5 of
the 6 traces coincide exactly with bus routes and the route
matching algorithm determines them to have low spatial er-



ror. In three cases, the trace is classified as a car because
the vehicle is too fast i.e too far ahead of the bus schedule
to be a bus. The 8N and 8S cases are interesting because
they were both collected during rush hour, and the traces are
not significantly faster than the bus schedule. However, their
inter-stop separation is of the order of 500-600 meters, much
higher than the mean inter-stop separation for buses which is
approximately 200 meters. This causes them to be correctly
classified as cars.

As control experiments, we also collected bus traces
along routes 8, 22 and 156 in both directions at approx. the
same time as the car traces. All of these passed all the post-
processing tests and were correctly classified as buses.

Finally, in addition to the traces shown in the table, we
collected 4 car traces in the vicinity of major bus routes, but
not coinciding with them. All 4 were classified as cars be-
cause the spatial error is large. Specifically, these traces had
root mean square distances of 798, 241, 863 and 129 meters
from their closest matching bus routes, all larger than our
cutoff error Dmaybe = 100 meters.
4.3 Tracking Accuracy in Subway

The purpose of the subway tracking algorithm is to de-
termine the arrival time of a train at each station. To the
ability of the subway tracking algorithm of determining the
current location of the train, we collected a new, annotated
set of four new traces from Chicago CTA Red and Blue line
subways. At each station, we recorded the arrival time using
an iPhone app designed for this purpose, while continuously
recording accelerometer data. The phone was in active use
during this recording, with no special precautions taken. We
first evaluate the performance of the mobility detector on two
of these traces, and then the localization performance of the
algorithm as a whole.

Figure 14 shows the mobility detection results for two
subway traces. The blue line shows the raw accelerometer
magnitude, and the green line the window-averaged proba-
bility of mobility. The gray boxes on top show the actual
time spent in tunnels between trains, and the lower gray
boxes show the detected intervals of vehicular movement.
While detected mobility matches up well with the ground
truth in general, the occasional spurious stop does appear.

To evaluate the performance of the subway tracking
HMM and viterbi algorithm, we compare the estimated ar-
rival time at each station with the actual arrival time. We
also compare with the raw train schedule (offset by our start-
ing time) as a straw-man. Under ideal conditions, the train
would follow the schedule perfectly, with no errors as a re-
sult. On a normal run, therefore, we would expect the sched-
ule to be highly accurate; we noticed nothing out of the ordi-
nary during these runs. Figure 15 plots, for each of the four
runs (BS, BN, RN, RS), the estimated, scheduled and ac-
tual arrival time at each station, with station numbers offset
for readability. We note that while there is significant vari-
ance, our estimator tends to stay closer to the actual arrival
time than the schedule does, even on these uneventful runs.
Across all runs and stops, the mean difference between the
estimated and actual time was 41 seconds, 18 seconds me-
dian. By contrast, the difference between the scheduled and
actual time was 55 seconds mean, 38 seconds median.
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Figure 15. Comparison of estimated, scheduled and ac-
tual arrival time at each station. Station numbers offset
for readability.

4.4 Utility of Cooperative Transit Tracking
To evaluate the overall utility of cooperative transit track-

ing, we developed a simulator based on the CTA General
Transit Feed Specification (GTFS) data. This dataset con-
tains the locations of bus and train stops, and the shapes of
bus and train routes. By overlaying the stop information onto
the known route shape data, we implemented a functional
transit network model that simulates a bus traveling along
a particular shape. To realistically simulate the movement
of buses in our simulator, we collected 6,300 drive hours of
real-time location information from the buses in the CTA net-
work. We then combined the real-time data with known stop
and shape information to interpolate high-frequency “real-
time” bus location points along each route.

We compared the performance of a simple statistical
arrival-time prediction algorithm against the CTA’s pub-
lished arrival-time schedule. The prediction algorithm is
a table-based predictor based on the mean inter-stop travel
time for all pairs of stops on each route, computed separately
for every hour of the week, to account for typical fluctuations
in traffic levels, such as rush hour traffic. [14] evaluated the
performance of different bus-arrival prediction schemes, and
found that the historical travel time model performed well.

We obtained recent ridership statistics from the CTA that
specify the distribution of bus riders across the CTA routes,
which we use in our simulation.

In order to evaluate cooperative transit tracking, we ran-
domly simulate hypothetical users that would query the sys-
tem for an arrival time. We assign each hypothetical user a
bus route at random based on the distribution from the CTA
ridership statistics. We then randomly select a bus stop, di-
rection and time at which the user would want to travel on
that route.

We ask the cooperative transit tracking system for the
current (if presently tracked) or last-known (if not presently
tracked) location of the bus, and then feed its location into
our table-based predictor to determine the next time at which
a bus with the specified route number will arrive at the se-
lected stop. We assume the user will arrive at the stop at
the time predicted by our system and wait for the vehicle to
arrive. Thus, the difference between this prediction and the
actual arrival-time as supplied by the real-time CTA data, is



Figure 14. Visual representation of the results for the CTA blue line going south, and red line going north. Upper grey
boxes are ground-truth time in tunnel, lower grey boxes are estimated times of mobility.
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Figure 16. Wait time vs. Penetration level using Cooper-
ative Transit Tracking with fallback on schedule.

computed as the expected waiting time for the user.

4.4.1 Cooperative Transit Tracking Simulation
Our system simulates the bus that will be servicing the

selected stop based on our real-time trace data. We begin the
simulation with the bus at its origin location, and proceed to
follow it through time to its final stop. We assume users in-
strumented with our smartphone application board and alight
the vehicle based on an exponential distribution.

Our exponential distribution is seeded by a mean time
between boardings (i.e., inter-arrival time) for instrumented
transit riders. The mean of this distribution is calculated from
the route ridership reported by the CTA. We assume CTA
riders are equally distributed across all trips the selected bus
route takes, and we assume a constant percentage of the rid-
ers have our smartphone app installed.

We take into account both the route matching accuracy
and the decision time needed by our system to correctly iden-
tify the vehicle, before tracking begins. We do this by using
the empirical distribution of decision times from our results
(§4.2). For each simulated rider instrumented with our app,
we use data from the rider with probability equal to the sys-
tem recall. We then sample a decision time from the distri-
bution in Figure 13. When a hypothetical user queries out
system, we check to see if an instrumented rider is on-board
the vehicle, and has been on-board for a time exceeding this
decision time. If yes, we return the current location of the
vehicle. Otherwise, we return its last known user-tracked lo-
cation.

4.4.2 Results
Using our simulation environment, we evaluate the per-

formance of cooperative transit tracking as a function of the
“penetration level”, which is the percentage of all transit rid-
ers who are instrumented with our smartphone application.
The main results from our simulation efforts are shown in
Fig. 16. As the penetration level rises, the amount of time
spent waiting for the bus at the bus stop, or “wait time” is
reduced. The reported wait time is the number of minutes
spent at the bus stop, if you arrived at the stop when either
the schedule or the tracking system said the bus would arrive.
3 Specifically, for a bus that is real-time tracked all the way to
the stop, we report a “wait time” of 30 seconds, a reasonable
safety margin. The motivation behind this interpretation of
wait time is that users are likely to adapt their travel behav-
ior when they have real time information, and plan to arrive
at the stop with little or no margin. Similar gains could be
achieved without real-time tracking, but only if buses always
arrived on time.

In 16, the system falls back on the schedule when no real
time tracking is available. Thus, at the 0% penetration level,
performance is identical to simply using the schedule (and
arriving two minutes early). Conversely, at 100% penetra-
tion, performance is essentially identical to an officially in-
stalled transit tracking system. We note the median wait time
drops sharply even at low levels of penetration, and that at
20% penetration level, the median wait time is essentially
zero.

In Figure 17, we show the wait times for only those users
that were able to take advantage of cooperative transit track-
ing data. This illustrates how the quality of our arrival time
predictions improve as the penetration level rises. Here, ev-
ery request is served using cooperative transit tracking data,
but the quality of the arrival time prediction depends on when
the location of the bus was last reported.

Finally, Fig. 18 shows the proportion of requests served
using cooperative transit tracking data as a function of the
penetration level. The proportion rises steeply up to the
20% penetration level, where more than 83% of requests are
served. Intuitively, above the 20% level the vast majority of
vehicles either already have an instrumented rider aboard, or

3When using the schedule only, we found arriving two minutes
early to be ideal: sometimes buses arrive ahead of the schedule, and
getting to the stop exactly on the scheduled time would often incur
a long wait for the next bus.
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Figure 17. Wait time vs. Penetration level using Cooper-
ative Transit Tracking Only.
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Figure 18. Requests served vs. Penetration level.

had one aboard quite recently.
These results are particularly encouraging in the context

of trains, where a relatively small number of vehicles serve
a very large number of users. Chicago’s CTA has real-time
tracking for all its buses, but does not supply it for its trains,
which serve nearly 600,000 rides per day.

5 Conclusion
We have described a system for cooperative transit track-

ing that combines power-efficient activity detection using ac-
celerometer data, memory-efficient spatio-temporal bus tra-
jectory matching using least squares minimization, and ac-
celerometry in conjunction with a Hidden Markov model to
track underground trains when other localization schemes do
not work. Our end-to-end results suggest that with a pene-
tration level of 5%, our system can have a significant impact
on commuter wait times. We find that cooperative transit
tracking is a viable alternative where official solutions are
too expensive or otherwise difficult to put in place.
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